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1.0 INTRODUCTION 

1.1 BACKGROUND 

AEDC’s thermocouple measurement systems consist of multi-channel standalone uniform 
temperature references (UTRs) and direct current (DC) voltage measurement systems. The 
UTR converts from thermocouple wire to copper wire and provides an accurate measurement of 
the temperature at that junction. The DC voltage measurement equipment digitizes the 
thermocouple voltage output using an analog-to-digital converter (ADC). Separate processing is 
provided to convert the digitized voltages to temperature in °C.  

The existing thermocouple measurement systems are obsolete and are being replaced with 
multi-channel digital temperature scanners (DTS).  Each DTS is configured as a 16-, 32-, or 64-
channel system. Each DTS includes a UTR, a DC voltage measurement ADC, and engineering 
unit processing within the unit. These modular units are capable of being located in 
environments ranging from -5 to 60°C without requiring environmental protection.  This enables 
the DTS to be located in the test cell close to the engine, thus reducing test buildup and 
installation time.  

1.2 PURPOSE 

The purpose of this report is to document the DTS measurement uncertainty using data that are 
a byproduct of the routine periodic calibration process.  The calibration process replaces the 
input thermocouples with a known National Institute of Standards and Technology (NIST) 
traceable DC voltage standard. The difference between measured voltage and applied voltage 
is defined as error (Ref. 1). This calibration process is repeated for each thermocouple channel 
at eight different voltages and the calibration results are used to statistically quantify the 
performance of either a single DTS or a family of DTS using measurement uncertainty concepts 
(Refs. 2-4).  These data, which are collected before any adjustments are made to the DTS, are 
referred to as “as-found” or “as-received” data. This terminology distinguishes such data from 
data collected after adjustment, which are referred to as “as-left” or “as-returned” data.  

2.0 STATEMENT OF THE PROBLEM, APPROACH, AND METHOD OF ANALYSIS 

2.1 PROBLEM STATEMENT 

Thermocouples are differential temperature measuring instruments. As such, the voltage 
produced by the thermocouple circuit is a function of the temperature difference between the 
thermocouple’s hot (i.e., measuring) junction and the cold (i.e., reference) junction. Because 
thermocouples are differential measuring instruments, the problem in constructing the DTS 
measurement uncertainty is that both the reference junction temperature and the thermocouple 
analog voltage must be precisely known and their individual uncertainties combined to establish 
the overall DTS measurement uncertainty.  

To accommodate AEDC’s dual use of the DTS as both a thermocouple measurement system 
and a low-level DC voltage measurement system, the measurement uncertainty must be 
developed in two ways.  For thermocouples, the measurement uncertainty must include the 
accuracy of the reference junction as well as the accuracy of the DC voltage measurement.  For 
low-level DC volt measurement applications, the reference junction temperature is not used 
since the measurements are voltages and not thermocouples. In this case, the measurement 
uncertainty would exclude the reference junction 
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2.2 APPROACH 

The approach is to use as-found calibration data to determine measurement uncertainty. The 
collecting of as-found calibration data is detailed in AEDC’s locally developed calibration 
procedure, LDP-AEDC-34. The procedure separates the calibration into the DC voltage element 
and the reference junction element. The tolerance for the analog channels is ±16µV, which 
corresponds to ±0.4°C using an average thermocouple sensitivity of 0.041mV/°C. This DC 
voltage tolerance was developed from the manufacturer’s overall accuracy specification of 
±0.5°C by allocating ±0.4°C to DC voltage and ±0.3°C to the reference junction. Each DTS 
channel is calibrated individually by applying known DC voltages in eight steps ranging from  
-5mV to 65 mV. At each input the error is determined. This provides eight measures of error for 
each DTS channel.  

The approach to document the reference junction uncertainty used calibrated thermocouples as 
inputs. For each 16-channel reference block, two thermocouples immersed in an electronic ice 
bath were input to the DTS. This process was repeated at three environmental temperatures: 
60°C; ambient, which is nominally 22°C; and -5°C. The ice bath data from the thermocouples 
were used to determine the measurement uncertainty of the reference junction.   

2.3 METHOD OF ANALYSIS 

The DTS is a stand-alone thermocouple measurement system. The system provides for 
accurate measurement of DC voltages and for accurate measurement of the uniform 
temperature reference. The latest DC voltage calibration from each DTS was analyzed to 
quantify the uncertainty of the voltage measurement.  Additionally, calibration data documenting 
the DTS performance at -5, 22, and 60°C were analyzed to quantify the performance over the 
operating temperature range. These data were combined using RSS to establish the 
measurement uncertainty. 

3.0 RESULTS 

3.1 DC VOLTAGE MEASUREMENT ERRORS 

3.1.1 Analyzing Errors for Each DTS Unit 

The latest DTS DC voltage calibrations from 2012 or 2013 were used to quantify the DC voltage 
errors. The as-found or as-received calibration data from 46 individual units were analyzed. The 
data were used to establish the measurement uncertainty for each unit. The data were also 
pooled together and used to create the measurement uncertainty for the family. 

Table 1 is a list of the individual statistics for each of the 46 DTS units. Each unit’s statistics 
(average, standard deviation and standard uncertainty) are computed from the as-found 
calibration errors and presented as mV errors.  
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Table 1. Individual DTS DC Volt Statistics 

DTS AVG, mV SIGMA, mV uc, mV DTS AVG, mV SIGMA, mV uc, mV 

F230774 -0.001 0.011 0.011 F242783 0.003 0.004 0.005 

F230775 -0.001 0.003 0.003 F242800 -0.001 0.003 0.003 

F230776 0.001 0.003 0.004 M014548 0.003 0.004 0.005 

F230777 0.001 0.004 0.004 M014549 0.007 0.006 0.009 

F235082 0.001 0.005 0.005 M014550 0.001 0.004 0.004 

F239546 -0.001 0.004 0.004 M014551 -0.001 0.004 0.004 

F239547 0.001 0.004 0.005 M014552 0.006 0.007 0.009 

F239548 0.005 0.006 0.008 M014553 0.002 0.004 0.004 

F239549 0.001 0.004 0.004 M014554 0.002 0.004 0.004 

F239550 0.003 0.006 0.007 M014555 0.003 0.004 0.005 

F239555 0.002 0.004 0.005 M014844 -0.001 0.003 0.003 

F239557 0.006 0.006 0.009 M014845 0.010 0.009 0.013 

F239560 0.002 0.005 0.005 M015226 0.007 0.006 0.009 

F239561 0.002 0.005 0.005 M015227 0.006 0.005 0.008 

F239563 0.005 0.006 0.008 M015228 0.003 0.004 0.005 

F239564 0.004 0.005 0.006 M015230 0.002 0.004 0.005 

F239572 0.001 0.004 0.004 M015231 0.003 0.005 0.006 

F239573 0.001 0.004 0.004 M015232 0.005 0.005 0.008 

F239739 0.000 0.002 0.002 M015233 0.001 0.002 0.002 

F239740 0.004 0.004 0.006 M015234 0.007 0.007 0.010 

F242741 0.000 0.004 0.004 M015235 0.006 0.007 0.009 

F242777 0.002 0.004 0.004 M015236 0.005 0.007 0.008 

F242778 -0.001 0.003 0.003 M016055 0.005 0.006 0.007 
 
3.1.2 Analyzing Errors at Each Input Voltage Level  

Table 2 lists the DTS unit statistics at each input voltage: -5, 0, 6, 18, 30, 42, 54, 65 mV.   The 
statistics were computed for each input voltage level by pooling all channels from all 46 DTS 
units. At each input voltage level, there are 1,884 individual errors.  

Figure 1 illustrates the U95 measurement uncertainty as a function of input voltage level for both 
the as-left and as-received calibration data. The as-left uncertainty is relatively constant across 
the input voltage levels. In contrast, the as-received data indicate a bias error across all input 
voltages coupled with a gain error at inputs greater than 18 mV.  

Table 2. DTS DC Volt Measurement Statistics 

-5 mV 0 mV 6 mV 18 mV 30 mV 42 mV 54 mV 65 mV 

AVG, mV 0.000 -0.001 0.001 0.002 0.003 0.004 0.005 0.006 

SIGMA, 
mV 

0.004 0.004 0.004 0.004 0.005 0.006 0.006 0.007 

uc, mV 0.004 0.004 0.004 0.005 0.006 0.007 0.008 0.009 

U95, mV 0.008 0.008 0.008 0.009 0.011 0.013 0.016 0.018 
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Figure 1. Analog Voltage Measurement Uncertainty at Each Input Voltage Level 

 
3.1.3 Analyzing Errors for the Population of DTS Units 

The errors from all 46 DTS units were combined to establish the distribution of errors. This 
distribution is shown in Fig. 2. The statistics for this population are as follows: 

 Average Error: 0.002 mV 

 Standard Deviation: 0.006 mV 

 Standard Uncertainty: 0.006 mV 

 Expanded Uncertainty, U95 : ±0.012 mV 

The expanded uncertainty (U95 = ±0.012 mV) obtained by lumping all errors together 
corresponds to the uncertainty at the 30- to 42-mV level (refer to Table 2). Thus, the pooled 
approach provides an averaged value of uncertainty across all input voltages. Accordingly, the 
pooled approach may not be acceptable if the measurements are greater than 42 mV since the 
pooled approach understates the measurement uncertainty (refer to Table 2). 
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Figure 2. Distribution of Errors for Analog Voltage Measurement 

 
3.2 UNIFORM TEMPERATURE REFERENCE JUNCTION  

The DTS utilizes an isothermal UTR for each 16-channel block of inputs. Two precision 100-
ohm RTDs located at the ends of the block are used to measure each reference junction block. 
These are then averaged to provide the reference temperature for the block. 

The uncertainty of the UTR is not measured directly; rather, it is indirectly determined. Two 
reference thermocouples are used as inputs for each isothermal block. The thermocouples are 
immersed in an ice bath and connected to the first and last channels of each block (e.g., 
channels 1 and 16, channels 17 and 32, etc.). The analog outputs of these channels are 
measured and errors determined as the difference between the ice bath thermocouples 
(nominally zero mV) and the analog voltage. As a result, the measurement error represents the 
total error of the reference thermocouple immersed in an ice bath, the UTR accuracy as 
measured by reference RTDs, and the analog voltage measurement error for that channel.  

AEDC’s approach was to obtain calibration data using ice point reference thermocouples at  
-5, 22, and 60°C. No attempt was made to isolate the UTR accuracy from the calibration data.  

Figure 3 illustrates the error histograms for the ice bath thermocouples at three ambient 
temperatures. The data were collected by inserting the DTS in an environmental chamber and 
setting the temperature to -5, 22, and 60°C. The units were allowed to stabilize at each 
temperature and data collected from the ice bath thermocouples.  
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Figure 3. Ice Bath Thermocouple Measurement Uncertainty at Different Ambient 
Temperatures 

 
Table 3 documents the parameters for each of the three temperatures. As shown, the expanded 
uncertainty which includes the reference junction and the analog voltage uncertainty is less than 
0.3°C and is well within the total specification of 0.5°C.   

The reference junction uncertainty can be determined using the as-left analog voltage 
uncertainty and the ice bath thermocouple uncertainty. The as-left analog uncertainty data at the 
0-mV input voltage level (see Fig. 1) is 0.0043 mV and corresponds to 0.1°C. Using this and the 
ice bath reference thermocouple uncertainty of 0.27°C, the reference junction uncertainty is 
determined from RSS to be 0.25°C. 

Table 3. Ice Bath Reference Thermocouple Uncertainty  

Parameter -5°C 22°C 60°C 

Sample Size 154 150 162 

Average, °C 0.018 0.005 -0.004 

Standard Deviation, °C 0.134 0.134 0.133 

Standard Uncertainty, °C 0.135 0.134 0.133 

Expanded U95 Uncertainty, °C 0.271 0.268 0.266 
 
 

3.3 COMBINED UNCERTAINTY 

The measurement uncertainty includes the DC voltage measurement errors, UTR error, UTR 
gradient, NIST interpolating polynomial error, and calibration standards. The elemental errors 
are presented in Table 4. These elemental errors are combined using RSS to provide an 
expanded uncertainty of ±0.44°C, which is consistent with the specification of ±0.5°C.  
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The standard uncertainty in Table 4 represents the standard uncertainty of the population of all 
DTS voltage measurement errors. Since the uncertainty increases with gain (see Fig. 1 or Table 
2), the pooled value is biased and is only representative of the uncertainty near the 30mV input 
voltage level.  For voltage measurements less than 30 mV, the pooled value overstates the DTS 
measurement uncertainty.  Similarly, for measurements greater than 30 mV, the pooled value 
understates the DTS measurement uncertainty.  Accordingly, it may be preferable to use the 
measurement uncertainty corresponding to the particular input voltage of interest rather than to 
use the pooled method. 

Table 4. Components of DTS Measurement Uncertainty 

Standard Uncertainty 
Component, °C 

Value, °C Comments 

DC Voltage Measurement 0.15 
Corresponds to standard uncertainty  
of 0.006 mV  (Section 3.1.3) 

UTR Accuracy 0.13 Table 3 
UTR Gradient 0.05 Estimated based on Scanivalve data 
Interpolating Polynomial 0.05 NIST ITS-90 Polynomials 
Standards  0.06 Fluke 5440B, Kaye 140 
Combined Standard 
Uncertainty 

0.22  

Expanded Uncertainty, U95 0.44  
 
3.3.1 DTS Measurement Uncertainty for ANSI Type Thermocouples 

The average sensitivities for thermocouples most often used at AEDC are presented in Table 5. 
The uncertainty for each thermocouple type is illustrated in Figs. 4-7. 

Table 5. Thermocouple Average Sensitivity 

ANSI Type Thermocouple Average Sensitivity, mV/°C 

Type K 0.041 

Type J 0.055 

Type T 0.043 

Type E 0.068 
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Figure 4. Measurement Uncertainty for ANSI Type K Thermocouple 

 
 

 
 

Figure 5. Measurement Uncertainty for ANSI Type J Thermocouple 
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Figure 6. Measurement Uncertainty for ANSI Type T Thermocouple 

 
 

  
 

Figure 7. Measurement Uncertainty for ANSI Type E Thermocouple  

 
4.0 SUMMARY 

As-found calibration data from 46 individual DTS were analyzed and used to establish the 
measurement uncertainty for the DTS family. The calibration data consisted of (1) as-found 
calibration errors for each channel at eight different voltage levels established by applying 
known DC voltages into each channel and (2) reference junction calibration errors at nominally  
-5, 22, and 60°C environmental temperatures. The reference junction errors were established 
using calibrated thermocouples that were immersed in an ice bath.  

0.30

0.35

0.40

0.45

0.50

0.55

0.60

‐116 0 140 419 698 977 1256 1512

U
9
5
. °
C

Temperature, °C

DTS Expanded Measurement Uncertainty, ANSI 
Type T Thermocouple

0.30

0.35

0.40

0.45

‐200 0 200 400 600 800 1000 1200

U
9
5
, °
C

Temperature, °C

DTS Expanded Measurement Uncertainty, ANSI 
Type E Thermocouple



AEDC-TR-13-P-9 

12 
Statement A:  Approved for public 
release; distribution is unlimitied. 

For the DC voltage calibrations, two different approaches were used to analyze the calibration 
data. First, the uncertainty analysis was performed for the DTS family by pooling their calibration 
errors together and using descriptive statistics to establish population statistics.  Second, the 
analysis was performed at each of the eight input voltage levels by combining all 46 DTS at that 
voltage level. At each input voltage level, descriptive statistics were used to establish the 
standard uncertainty. Both methods provide comparable results. However, the second method 
which provides measurement uncertainty at each input level offers the advantage of using 
percent of reading and may be advantageous to the analyst. 

The reference junction errors were analyzed by pooling all errors at each of the three 
environmental temperatures. The statistics for the environmental temperatures were consistent. 

In summary, the DTS measurement uncertainty was determined to be within the manufacturer’s 
specification of U95 = ±0.5°C.  If the analyst requires a single value for uncertainty, then U95 = 
±0.5°C should be quoted. Because there is an observed percent of reading trend with the 
analog voltage measurement uncertainty, there are advantages to quoting uncertainty in terms 
of percent reading that the analyst should consider.  
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NOMENCLATURE 

AEDC Arnold Engineering Development Complex 

ADC Analog to digital converter 

DTS Digital temperature scanner 

FS Full scale 

NIST National Institute of Standards and Technology 

RTD Resistance temperature detector 

RSS Root sum square 

UTR Uniform temperature reference 

UC Standard uncertainty 

U95 95% confidence interval for measurement uncertainty 

 

 


